Leading Thermal Analysis.

DSC 204 *F1* Phoenix[®] Features and Capability

熱分析

搜集物質的特性隨著溫度變化所相應的 函數關係的技術稱為"熱分析".

熱分析技術

●示差掃描量熱儀(Differential Scanning Calorimetry DSC) ●示差熱分析儀(Differential Thermal Analysis, DTA) ●熱重分析儀(Thermogravimetric Analysis, TGA) ●高解析度熱分析儀(High-Resolution TGA^{™)} ●示差掃描量熱-熱重分析聯用(Simultaneous DSC-TGA) ●熱機械分析儀(Thermomechanical Analysis TMA) ●動態熱機械分析儀(Dynamic Mechanical Analysis DMA) ●介電性質分析(Dielectric Analysis DEA) ●微熱分析儀-原子力顯微鏡與熱分析技術聯用- uTA (Micro TA - Atomic Force Microscope & TA)[™]

Thermal Analysis Techniques

●重量(Weight)-TGA

●尺度(Length)-TMA

●熱流(Heat Flow)-DSC

MMM

Differential Scanning Calorimeter (示差掃插量熱儀) (DSC)

在程式溫度(升/降/恒溫及其組合)過程中,測量樣品與參考物 之間的熱流差,以表徵所有與熱效應有關的物理變化和化學變化。

Applications of DSC

相變化點	Phase Transition	熔融熱	ΔΗ
玻璃轉移溫度	Тg	反應熱	ΔΗ
熔點	Melting point	活化能	Ea
冷結晶溫度	Crystal Temperature	氧化導引時間	O.I.T.
降溫結晶溫度	Cold Crystal Temperature	反應動力學	Dynamic
結晶度	Crystallinity	交連	Curing
結晶熱	Crystal Energy	純度	Purity
結晶半週期	Crystal Period	比熱	Ср

DSC: Typical DSC Transitions

Heat Flux DSC function principle

DSC signal (first order transition)

DSC 204 *F1 Phoenix*[®], Schematic Design

Exchangeable DSC Sensor Types

new τ–Sensor -180 ... 700 °C short response time silver sensor

I - 感測器,回應速度最快,具有非常理想的峰分離能力,

μ = 感測器, 靈敏度為普通感測器的十幾倍·

μ-Sensor

-150 ... 400 °C high sensitivity silicon sensor

Power Compensation DSC function principle

PRTD

Heater

熱補償式 Power Compensation DSC

Protein Denaturation蛋白質變質測試

Applications Laboratory/DSC 204 F1

Tzero Sensor Structure / Thermocouple Circuit

DSC 204 *F1 Phoenix*[®], Schematic Design

DSC 204 F1 Phoenix®

DSC 204 F1 Phoenix[®] - ASC

DSC 204 F1 Auto Sampler

DSC 204 F1 Phoenix®

Technical data

- Temperature range:
- Heating and cooling rates:
- DSC detection limit:
- Exchangeable sensors:
- Several cooling devices:

-180 ... 700°C 0.001 ... 100 K/min 0.1 μ W (depending on the sensor type) fast τ -sensor, high sensitive μ -sensor compressed air (to RT) Intracooler (-85 ... 600°C) liquid nitrogen (-180 ... 700°C)

- Electronically controlled gas flow for purge and protective gases
- Specific heat measurements possible (software option)
- Advaced Software available: Thermokinetics[®], Peak Separation, Purity Determination, ChemReo[®], etc.
- Automatic Sample Changer (ASC) for 64 samples and all crucibles

DSC 204 F1 Phoenix[®]

Already Prepared for Different Cooling Devices

Liquid / gaseous nitrogen cooling

(LN₂ / GN₂) -180 ... 700 ℃

Intra-Cooler -85 ... 600°C

Aluminium cooling body

Quench Cooling Can

Compressed air cooling

RT ... 700 °C

DSC 204 F1 Phoenix[®], Intracooler

Applications Laboratory/DSC 204 F1

Netzsch DSC 的特點

- *德國精密工藝製造;
- *. 隱藏式爐體設計,不受外界環境影響.
- * 熱流靈敏度高, 0.1 uW
- *基線穩定性,10uW
- * 配置8點溫度校正, 溫度準確性高, 正確性 +/- 0.1°C, 精確性 +/- 0.01°C C6H12, Hg, KNO3, In, Bi, CsCl, Sn, Zn
- * 爐體可長時間於 600°C 恆溫
- * 爐體氣密性和熱絕緣性佳
- * 整體成形的輕質銀鑄造, 不容易腐蝕, 使用壽命長
- *三路氣體設計,保護爐體,污染清除容易,使用方便(選件MFC,質量流量控制)
- * 樣品自動進樣器(選配件)
- *坩鍋多樣性: 固體, 液體, 高壓坩鍋, 等, 充分滿足需求
- *因爲污染清除容易,爐體不會腐蝕,維修成本低廉
- *DSC F1 真空度高,可以和 FTIR 或 Mass 連用.

DSC Calibration Curves

DSC 溫度與熱焓的校正

DSC 溫度與熱焓實際量測與理論値建檔

	the second	When the Real Property of the	N K CC	Same	de Carrier - []	DSC 200F3 1-0	entior, TC: E	_	Coefficient
_			THE SA	ALL FOR		柳香	任田		Calculate
	Substance	Temp.	Enthalpy	Peak Area	Sensit.Exp uV/mW	Mathem. Weighting	Sensit, Calc.		Graph
									Print
1	CSH12	-87.0	-79.400	-79.400	1,000	1.000	1.000	E .	
2	C10H18	-84.7	-22.300	-22.300	1.000	1.000	1.000		844
3	Hg	-38.8	-11.400	-11.400	1,000	1.000	1.000		Insert
4	H20	0,0	-333.400	-333.400	1.000	1,000	1.000		
5	Ga	29.8	-80.000	-80.000	1.000	1.000	1.000		Delete
6	Biphenyl	69.2	+120.500	+120.500	1.000	1.000	1.000		1000
7	Benzoeacid	122.4	-147.400	-147,400	1.000	1.000	1.000		
8	KN03	128.7	-50.000	-50.000	1.000	1.000	1.000		Cancel
9	Indium	158.6	-28,600	-28.600	1,000	10.000	1.000		
	Concernant in the second se			200.000	1.000	1.000	1 000	*	Help
96 27 17	Benzoeacid KNO3 Indium	122.4 128.7 156.6	-147.400 -50.000 -28.600	-147.400 -50.000 -28.600	1.000 1.000 1.000	1.000 1.000 10.000	1.000 1.000 1.000		Cance

DSC 溫度與熱焓的理論値

標準物質	理論熔點 ℃	理論熔融熱焓 J/g
C6H12	-87	-79.4
Hg	-38.8	-11.44
KNO3	127.7	-50.24
In	156.6	-28.6
Sn	231.9	-60.5
Bi	271.4	-53.3
Zn	419.5	-107.5
CsCl	476	-17.22

BeFlat

BeFlat

BeFlat (Polyetherimide, PEI)

Applications Laboratory/DSC 204 F1

Application – HDPE-Packaging

HDPE = High-Density Polyethylene

Applications Laboratory/DSC 204 F1

Analysis of Tm–calculation of crystallinity

Applications Laboratory/DSC 204 F1

Application – NR/SBR

Application – NR/SBR

ABS = AcryInitrile-Butadiene-Styrene-Terpolymer

Application – ABS

Application – ABS

Applications Laboratory/DSC 204 F1

PP = Poly-Propylene

Application – PP

PVC = Poly-Vinyl-Chloride

Application – PVC

Applications Laboratory/DSC 204 F1

Application τ -Sensor: Separation of the **NETZ** Components of a PE-Blend

Application τ -Sensor: Separation of the Components of a PE-Blend

LDPE-HDPE-PP

LDPE-HDPE-PP (Peak Separation)

DSC 不同配方及加工條件量測-Part 1 (First Heating Rate 10°C/min)

DSC 不同配方及加工條件量測-Part 2 (First Cooling Rate 10°C/min)

Applications Laboratory/DSC 204 F1

DSC 不同配方及加工條件量測-Part 3 (Second Heating Rate 10°C/min)

DSC 不同配方及加工條件量測-Part 4 (結論說明)

以下的圖是PET以不同的冷卻速率做實驗再做第二次加熱的曲線, 紅色曲線(10°C/min cooling rate)為例,冷卻過程樣品會有結晶現象,再次加熱時就看不到再結晶現象, 靛藍色曲線(60°C/min cooling rate)為例,冷卻過程樣品由於冷卻速率太快沒有結晶現象,再次加熱時就看到再結晶現象, 其它的不同冷卻速率再次加熱後所得到不同的再次結晶熱. 至於貴司的樣品T-4在冷卻過程看不到(很小)冷卻結晶,可能10°C/min對此T-4的樣品冷卻速率太快,來不及結晶, 所以在第二次加熱時會看到再結晶現象.

Polymers

Polyethylene terephthalate (PET) is a semi-crystalline thermoplastic polymer with a relatively slow crystallization rate. In the DSC experiments, the various levels of amorphousness (Tg 75-85°C) and crystallinity (recrystallization 146°C, melting 242°C) are apparent. The samples were cooled from the melt in the DSC 204 *F1* with the intracooler at different rates prior to the heating shown.

冷却速率对 PET 结晶的影响

Tg of Polymers–history of heat process can alter Tg

Applications Laboratory/DSC 204 F1

Analysis of Tm–effect of plasticizer

Isothermal test for crystallinity

- Heat the sample over Tm for a period for complete melting
- Quench the sample at T< Tm</p>
- Measure heat change in sample

Isothermal test for crystallinity

Applications Laboratory/DSC 204 F1

動力學分析-- Isothermal Kinetics(Option)

Application µ-Sensor: Denaturation of Proteine Solutions

Application µ-Sensor: Denaturation of Proteine Solutions

Applications Laboratory/DSC 204 F1

The DSC 200 F3 *Maia*[®] allows determination of the oxidative induction time (O.I.T.) according to well-established standards (ASTM D 38 95, ASTM D 6186, EN 728 und ISO 11357-3).

Oxidation Induction Time (O.I.T.)

Oxidation Induction Time (O.I.T.) **NETZSCH** Application on a PE/PP-Pipe Material

Oxidative induction of PE (To know the anti-oxidation capability)

Wind power plants

Curing of Polyester Resin

Curing of Polyester Resin

Curing of Polyester Resin (Thermokinetics)

Curing of Polyester Resin (Predictions)

Thermal Analysis on Curing Monitoring of Thermosetting Resins

Thermoset: Comparison of First and Second Heating Runs

Thermoset: I sothermal Temp 170 Deg C Different I sothermal test results comparison

利用Tg1/Tg2的方式評價Epoxy是否完全固化?

 Step1 - 以200C/min 掃瞄求出 Tg1

 Step2 - 在一足夠高的溫度下 (如175 °C) 下烘烤 15min 以保證完全反應

 Step3 - 再次以 20°C/min 掃瞄求出 Tg2

 最終比較 Tg1 及 Tg2 二者, 依據以下規律判斷固化程度:

 IF 0°C =< Tg2 - Tg1 =< 5°C</td>

 表示反應完全

 IF Tg2 -Tg1 > 5°C

 表示反應不完全

 IF 0°C > Tg2 - Tg1

 Action

 Action

 最於比較 Tg1 及 Tg2 二者, 依據以下規律判斷固化程度:

 IF 0°C =< Tg2 - Tg1 =< 5°C</td>

 表示反應不完全

 IF 0°C > Tg2 - Tg1

利用Tg1/Tg2的方式評價Epoxy是否完全固化?

DSC: Determination of % Cure

DSC: Determination of % Cure

Applications Laboratory/DSC 204 F1

80

以DSC觀察矽膠封裝的行為

Cross-linking upon heating

Cross-linking upon heating

Degree of cross-linking

Degree of cross-linking

Application: Sorbitol

Application: Sorbitol

Determination of purity

纯度对熔化的影响

Van't Hoff 纯度计算

Applications Laboratory/DSC 204 F1

Application: Melting/Solidifcation of AlSi-Alloys

Application: Melting/Solidification of AlSi-Alloys

DSC 204 F1 – Temperature Modulation

傳統DSC的限制

*基線彎曲及斜率改變影響微弱轉移偵測

*無法同時得到解析度與靈敏度

*無法測量絕對熱流改變,只能得到總熱流

*無法分辨及分析重疊的轉移(如玻璃化轉移及焓緩和或應力鬆弛) *無法測量恒溫時比熱(Cp)改變

*比熱(Cp)測試繁瑣

*基線彎曲及斜率改變影響微弱轉移偵測

*無法準確量測初始結晶度

*無法直接測量熱傳導係數

TM-DSC 主要的好處

- •同時得到高靈敏度及高解析度.
- ●絕對熱流的測量
- ●直接比熱測量(改進傳統DSC繁瑣測量方式).
- ●"擬恆溫"的條件下量測材料比熱的變化.
- ●"擬恆溫"的條件下量測材料冷結晶之現象.
- ●將複雜的相轉移現象分解爲簡單易判斷的成份.
- ●能夠決定材料之初始結晶度(ie.Initial Crystallinity).
- 消弭基線影響以取得微弱轉移溫度的測量.
- ●解決傳統DSC所無法測試及解釋的現象

●量測熱傳導率.

TM-DSC 如何不同於DSC?

DSC TM-DSC COMMENTS*

實驗參數需 線性升溫速率 線性升溫速率 TM-DSC的範圍由恆溫 要編輯那些? -10 ℃/min

溫度的振盪幅度 範圍由+/-0.01-10℃/min 溫度的振盪周期 範圍由+/-0.01-10℃/min

TM-DSC 如何不同於DSC ?

DSC $dQ/dt = Cp(\beta) + f(t,T)$

where: dQ/dt = 總熱流 Cp = 比熱 T = 絕對溫度 Cp (β) = 比熱成份 f (t,T) = 動力成份

TM-DSC

 $dQ/dt = Cp (\beta + AT \omega \cos \omega t) + A_k(\sin \omega t) + f(T,t)$

where (β + AT ω cosωt) = 測到的加熱速率 (dT/dt)
 AK = 振幅對溫度振盪的動力成分回應
 f (T,t) = 在沒有溫度振盪的情形下的動力成分回應

TM-DSC 訊號的計算

綜論:

所有的TM-DSC之訊號是從以下三個基本量測訊號獲得的.

- ●時間(Time)
- ●振盪熱流(Modulated Heat Flow)
- ●振盪溫度(Modulated Temperature)

TM-DSC - 瞬間熱流改變

TM-DSC

 $dQ/dt = Cp (\beta + AT \omega cos\omega t) + A_k(sin \omega t) + f(T,t)$

= <u>Reversing heating flow</u>

玻璃轉移 熔點(some) 比熱

+ Nonreversing heat flow

焓松弛 氣化,蒸發 冷結晶 裂解 固化或熟化 熔點(some)

Where (β + AT ω cosωt) = 測到的加熱速率 (dT/dt) AK = 振幅對溫度振盪的動力成分回應 f (T,t)= 在沒有溫度振盪的情形下的動力成分回應

總熱流是振盪熱流的平均值,這結果與傳統DSC在相同 平均升溫速率下的實驗值相同.

- 定義: 樣品的所有熱事件的總和.
- <u>計算</u>:利用傅利葉轉換的方法連續的將振盪熱流算出平均值.

可逆熱流是總熱流的比熱成份,將量測的比熱乘以平均加熱速率計算而得.

可逆熱流 = -Cp x平均加熱速率

計算的基礎

- $dQ/dt = Cp\beta + f(T,t)$
- where dQ/dt = 總熱流
 Cp = Cp量測値
 β = 平均加熱速率
 Cpβ = 總熱流的比熱成份(可逆的)
 f(T,t) =總熱流的動力成份(不可逆的)

TM-DSC 訊號 - 不可逆熱流(動力成份)

不可逆熱流是總熱流的動力成份,係由總熱流扣除可逆熱流計算而得.

不可逆熱流 = 總熱流 - 可逆熱流
=
$$dQ/dt$$
 - $Cp\beta$

計算的基礎

 $dQ/dt = Cp\beta + f(T,t)$ where dQ/dt = 總熱流Cp = Cp量測値 $\beta = 平均加熱速率$ $Cp\beta = 總熱流的比熱成份(可逆的)$ f(T,t) =總熱流的動力成份(不可逆的)

DSC 204 F1 – TM-DSC-Parameter Input

* TEMP	69 Temperature S	teps											_	
	IIr Type 1 2 3	°C -50.0 -50.0 100.0	K/min 5.000	Time 0:10:00 0:30:00	Period 60	Ampl. 0.5	pts/min 10.00 120.00	pts/K -45.0 °C	STC Co	02 02 0	N2 20 20 20	112 IC 20 ⊽ 20 ⊽ 20 ⊽	BC	
	Step Conditi STC Cooling Purge 1 MI Flow ac OXYGEN Purge 2 MI Flow ac NITROGEN Protective Flow ac NITROGEN ITROGEN Intracool Boosterc	ons C C C C C C C C C C C C C C C C C C C	ml/min ml/min ml/min	Cate	egory End tempera Heating F Pe Amplit	ature: 400.0 Rate: 5.000 sriod: 60 tude: 0.5	1C K/min seconds K		Ste In In Is Is Fii	p Catego itial Stan itial ynamic m othermal othermal nal Stand Inse nsert Dyr Inser	ory doy modulated dby Add rt Dynam namic Mo t Isotherr	ed nic Step ndulated St mal Step	iep	
				Acq C Poir Seg Tota	Please en rate defaults Standard ts ment:	ter a number b C High 10788 3700	etween 10 and	300 00:40		sert Isoth Dele CH Help f	nermal M ete Curre nange ga for Coolin	odulated S nt Step ses g Device		
							н	ilfe	OK.	A	bbrecher	n Cor	ntinue >	
TM-DSC - 調制熱流及調制加熱速率

DSC 204 F1 – TM-DSC - Result

DSC 204 F1 – TM-DSC - PET

Temperature Modulated Heat Flow (調制式熱流)

驟冷的PET - 初始結晶度用傳統DSC量測

DSC 204 F1 – TM-DSC - PET

DSC 204 F1 – TM-DSC - PS

Applications Laboratory/DSC 204 F1

DSC 204 F1 – TM-DSC - PS

DSC 204 F1 – TM-DSC – Post-Curing of an ETZSCH Epoxy Resin

DSC 204 F1 – TM-DSC – Post-Curing of an Epoxy Resin

DSC 204 F1 – TMDSC – Cp-Determination

$$C\rho = \frac{EQ}{RM}$$

where Cp = Specific Heat Capacity E = DSC Calibration Factor Q = Heat Flow R = Heating Rate

M = Sample Mass

$$Cp = K_{Cp} \propto \frac{Q \text{ (sample)} - Q \text{ (blank)}}{R}$$
where $K_{Cp} = Cp$ cell calibration constant

Sapphire Cp test

比熱係由振盪熱流的輻度除以振盪加熱速率的輻度而得.

- 定義: 讓物質每增加1℃所需要的熱能.
- 計算:利用MDSC獲得比熱的基礎,可由檢視傳統DSC在若干不同加熱速 率實驗下計算比熱的經驗而得.

傳統DSC(在兩個不同加熱速率下)

where: KCp = 校正常數

調制式 TM-DSC 比熱測量圖譜

TM-DSC 測出數據與文獻的比較:

Copper Heat Capacity		
Temp. (°C)	Cp (MDSC) (J/g/°C)	Cp (Liter.) (J/g/°C)
-154.3	0.2462	0.2812
-102.4	0.3116	0.3401
-51.5	0.3432	0.3656
-1.1	0.3639	0.3783
49.2	0.3737	0.3877
99.3	0.3784	0.3971
199.4	0.3863	0.4128
249.4	0.3977	0.4187
299.5	0.4175	0.4284

環氧樹脂在擬恆溫下的交聯

PET焓鬆馳-TM-DSC 計算出絕對焓鬆馳値之圖譜

PET焓鬆馳-不同老化時間使用TM-DSC 測得之圖譜

TM-DSC 靈敏度增加-微弱相轉移測試

Applications Laboratory/DSC 204 F1

Flexible and robust Optimized gas flow and cooling systems *Proteus*® Software with innovative features Compliant with 21 CFR Part 11 (in 04/2006)